Расчетная температура наружного воздуха для проектирования отопления и зависимость от нее температуры теплоносителя

В статье мы выясним, как рассчитывается среднесуточная температура при проектировании систем отопления, как зависит от температуры на улице температура теплоносителя на выходе из элеваторного узла и какой может быть температура батарей отопления зимой.

Затронем мы и тему самостоятельной борьбы с холодом в квартире.

Холод зимой — больная тема для многих обитателей городских квартир.

Общая информация

Здесь мы приведем основные положения и выдержки из действующих СНиП.

Температура наружного воздуха

Расчетная температура отопительного периода, которая закладывается в проект систем отопления — это ни много ни мало усредненная температура наиболее холодных пятидневок за восемь самых холодных зим из последних 50 лет.

Такой подход позволяет, с одной стороны, быть готовыми к сильным морозам, которые случаются лишь раз в несколько лет, с другой — не вкладывать в проект излишних средств. В масштабах массовой застройки речь идет о весьма значительных суммах.

Целевая температура в помещении

Стоит сразу оговорить, что на температуру в помещении влияет не только температура теплоносителя в системе отопления.

Параллельно действует несколько факторов:

  • Температура воздуха на улице. Чем она ниже — тем больше утечка тепла через стены, окна и крыши.
  • Наличие или отсутствие ветра. Сильный ветер увеличивает теплопотери зданий, продувая через неуплотненные двери и окна подъезды, подвалы и квартиры.
  • Степень утепления фасада, окон и дверей в помещении. Понятно, что в случае герметично закрывающегося металлопластикового окна с двухкамерным стеклопакетом потери тепла будут куда ниже, чем с рассохшимся деревянным окном и остеклением в две нитки.

Любопытно: сейчас наметилась тенденция именно к строительству многоквартирных домов с максимальной степенью термоизоляции.
В Крыму, где живет автор, новые дома строятся сразу с утеплением фасада минеральной ватой или пенопластом и с герметично закрывающимися дверями подъездов и квартир.

Фасад снаружи перекрывается плитами из базальтового волокна.

  • И, наконец, собственно температура радиаторов отопления в квартире.

Итак, каковы действующие нормативы температур в помещениях разного назначения?

  • В квартире: угловые комнаты — не ниже 20С, прочие жилые комнаты — не ниже 18С, ванная комната — не ниже 25С.
    Нюанс: при расчетной температуре воздуха ниже -31С для угловой и прочих жилых комнат берутся более высокие значения, +22 и +20С (источник — постановление Правительства РФ от 23.05.2006 «Правила предоставления коммунальных услуг гражданам»).
  • В детском саду: 18-23 градуса в зависимости от назначения помещения для туалетов, спален и игровых комнат; 12 градусов для прогулочных веранд; 30 градусов для помещений бассейнов.
  • В учебных заведениях: от 16С для спален школ-интернатов до +21 в классных помещениях.
  • В театрах, клубах, прочих увеселительных заведениях: 16-20 градусов для зрительного зала и +22С для сцены.
  • Для библиотек (читальных залов и книгохранилищ) норма — 18 градусов.
  • В продовольственных магазинах нормальная зимняя температура 12, а в непродовольственных — 15 градусов.
  • В спортзалах поддерживается температура 15-18 градусов.

По понятным причинам жара в спортзале ни к чему.

  • В больницах поддерживаемая температура зависит от назначения помещения. Скажем, рекомендованная температура после отопластики или родов — +22 градуса, в палатах для недоношенных детей поддерживается +25, а для больных тиреотоксикозом (избыточным выделением гормонов щитовидной железой) — 15С. В хирургических палатах норма — +26С.

Температурный график

Какой должна быть температура воды в трубах отопления?

Она определяется четырьмя факторами:

  1. Температурой воздуха на улице.
  2. Типом системы отопления. Для однотрубной системы максимальная температура воды в системе отопления согласно действующим нормам — 105 градусов, для двухтрубной — 95. Максимальный перепад температур между подачей и обраткой — соответственно 105/70 и 95/70С.
  3. Направлением подачи воды в радиаторы. Для домов верхнего розлива (с подачей на чердаке) и нижнего (с попарной закольцовкой стояков и расположением обеих ниток в подвале) температуры различаются на 2 — 3 градуса.
  4. Типом отопительных приборов в доме. Радиаторы и газовые конвектора отопления имеют разную теплоотдачу; соответственно, для обеспечения одинаковой температуры в помещении температурный режим отопления должен различаться.

Конвектор несколько проигрывает радиатору в тепловой эффективности.

Итак, какой должна быть температура отопления — воды в трубах подачи и обратки — при разных уличных температурах?

Приведем лишь небольшую часть температурной таблицы для расчетной температуры окружающего воздуха -40 градусов.

  • При нуле градусов температура подающего трубопровода для радиаторов с разной разводкой — 40-45С, обратного — 35-38. Для конвекторов 41-49 подача и 36-40 обратка.
  • При -20 для радиаторов подача и обратка должны иметь температуру 67-77/53-55С. Для конвекторов 68-79/55-57.
  • При -40С на улице для всех отопительных приборов температура достигает максимально допустимой: 95/105 в зависимости от типа системы отопления на подаче и 70С на обратном трубопроводе.

Полезные дополнения

Для понимания принципа работы системы отопления многоквартирного дома, разделения зон ответственности, нужно знание еще нескольких фактов.

Температура теплотрассы на выходе с ТЭЦ и температура отопления в системе вашего дома — это абсолютно разные вещи. При тех же -40 ТЭЦ или котельная будет выдавать около 140 градусов на подаче. Вода не испаряется только благодаря давлению.

В элеваторном узле вашего дома часть воды из обратного трубопровода, возвращающаяся из системы отопления, подмешивается к подаче. Сопло впрыскивает струю горячей воды с большим давлением в так называемый элеватор и вовлекает массы остывшей воды в повторную циркуляцию.

Принципиальная схема элеватора.

Зачем это нужно?

Чтобы обеспечить:

  1. Разумную температуру смеси. Напомним: температура отопления в квартире не может превышать 95-105 градусов.

Внимание: для детских садов действует другая норма температуры: не выше 37С. Низкую температуру отопительных приборов приходится компенсировать большой площадью теплообмена.
Именно поэтому в детских садах стены украшены радиаторами столь большой длины.

  1. Большой объем воды, вовлеченной в циркуляцию. Если убрать сопло и пустить воду с подачи напрямую — температура обратки будет мало отличаться от подачи, что резко увеличит потери тепла на трассе и нарушит работу ТЭЦ.

Если заглушить подсос воды с обратки — циркуляция станет настолько медленной, что обратный трубопровод зимой может просто перемерзнуть.

Зоны ответственности разделены так:

  • За температуру воды, нагнетаемой в теплотрассы, отвечает производитель тепла — местная ТЭЦ или котельная;
  • За транспортировку теплоносителя с минимальными потерями — организация, обслуживающая тепловые сети (КТС — коммунальные тепловые сети).

Такое состояние теплотрасс, как на фото, означает огромные потери тепла. Это зона ответственности КТС.

  • За обслуживание и настройку элеваторного узла — ЖЭУ. При этом, однако, диаметр сопла элеватора — то, от чего зависит температура радиаторов — согласовывается с КТС.

Если у вас дома холодно и все отопительные приборы — те, что установлены строителями, вы урегулируете этот вопрос с жилищниками. Рекомендованные санитарными нормами температуры они обязаны обеспечить.

Если вами предпринята какая-либо модификация системы отопления, например, замена батарей отопления газосваркой — тем самым вы берете на себя всю полноту ответственности за температуру в вашем жилье.

Как бороться с холодом

Будем, однако, реалистами: чаще всего решать проблему холода в квартире приходится самим, своими руками. Не всегда жилищная организация может обеспечить вас теплом в разумные сроки, да и санитарные нормы удовлетворят не каждого: хочется, чтобы дома было тепло.

Как будет выглядеть инструкция по борьбе с холодом в многоквартирном доме?

Перемычки перед радиаторами

Перед отопительными приборами в большинстве квартир стоят перемычки, которые призваны обеспечить циркуляцию воды в стояке при любом состоянии радиатора. Долгое время они снабжались трехходовыми кранами, затем стали ставиться без какой-либо запорной арматуры.

Перемычка в любом случае уменьшает циркуляцию теплоносителя через отопительный прибор. В том случае, когда ее диаметр равен диаметру подводки, эффект особенно выражен.

Простейший способ сделать свою квартиру теплее — врезать в саму перемычку и подводку между ней и радиатором дроссели.

Здесь ту же функцию выполняют шаровые вентиля. Это не вполне правильно, но работать будет.

С их помощью возможна удобная регулировка температуры батарей отопления: при перекрытой перемычке и открытом полностью дросселе на радиатор температура максимальна, стоит открыть перемычку и прикрыть второй дроссель — и жара в комнате сходит на нет.

Большое достоинство такой доработки — минимальная стоимость решения. Цена дросселя не превышает 250 рублей; сгоны, муфты и контргайки и вовсе стоят копейки.

Важно: если ведущий к радиатору дроссель хоть немного прикрыт, дроссель на перемычке открывается полностью. Иначе регулировка температуры отопления выльется в остывшие у соседей батареи и конвектора.

Еще одно полезное изменение. При такой врезке радиатор всегда будет равномерно горячим по всей длине.

Теплые полы

Даже если радиатор в комнате висит на возвратном стояке с температурой около 40 градусов, с помощью модификации отопительной системы можно сделать комнату теплой.

Выход — низкотемпературные системы отопления.

В городской квартире трудно применить внутрипольные конвектора отопления из-за ограниченности высоты помещения: подъем уровня пола на 15-20 сантиметров будет означать вовсе уж низкие потолки.

Куда более реальный вариант — теплый пол. За счет куда большей площади теплоотдачи и более рационального распределения тепла в объеме комнаты низкотемпературное отопление прогреет комнату лучше, чем раскаленный радиатор.

Как выглядит реализация?

  1. На перемычку и подводку так же, как в предыдущем случае, ставятся дроссели.
  2. Отвод от стояка на отопительный прибор подключается к металлопластиковой трубе, которая укладывается в стяжку на полу.

Чтобы коммуникации не портили внешний вид комнаты, они убираются в короб. Как вариант — врезка в стояк переносится ближе к уровню пола.

Не проблема и вовсе перенести вентиля и дроссели в любое удобное место.

Дополнительную информацию о работе централизованных систем отопления вы сможете найти в видео в конце статьи. Теплых зим!

Таблица 1. Расчетная температура воздуха в отапливаемых зданиях

Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения (утв. Госстроем РФ 12.08.2003)Документ действующий
1HQQESHpv9LE

  • Главное меню
    • Методика
      • 1. Общие положения
      • 2. Определение потребности в топливе для производства тепловой энергии на планируемый период
        • Таблица 1. Нормативные коэффициенты, учитывающие эксплуатационные нагрузки котлоагрегатов
          • Паровые котлоагрегаты
          • Водогрейные котлоагрегаты
        • Таблица 2. Нормативные показатели работы слоевых топок
          • С ручным забросом топлива
          • С забрасывателями и неподвижным слоем
        • Таблица 3. Нормативная доля расхода теплоты на собственные нужды котельной
        • Таблица 4. Нормы потерь твердого топлива, %
        • Таблица 5. Нормы потерь жидкого топлива
      • 3. Определение количества тепловой энергии, необходимой на планируемый период
        • 3.1. Суммарное тепловое потребление
        • 3.2. Количество тепловой энергии на отопление
        • 3.3. Количество тепловой энергии на приточную вентиляцию и воздушно-тепловые завесы
        • 3.4. Количество тепловой энергии на горячее водоснабжение
      • 4. Определение количества тепловой энергии, необходимой на покрытие тепловых потерь в тепловых сетях на планируемый период
        • 4.1. Эксплуатационные потери и затраты теплоносителя в водяных тепловых сетях
          • Таблица 6. Удельный объем трубопроводов тепловой сети
          • Таблица 7. Удельный объем систем теплопотребления
        • 4.2. Тепловые потери, обусловленные потерями теплоносителя
        • 4.3. Тепловые потери через изоляционные конструкции трубопроводов
      • 5. Определение планируемых значений расхода теплоносителя в водяных тепловых сетях
      • 6. Определение количества электрической энергии, необходимой на планируемый период, для производства и передачи тепловой энергии
        • 6.1. Определение количества электрической энергии, необходимой для производства тепловой энергии
          • Таблица 8. Удельные затраты электроэнергии на топливоприготовление
          • Таблица 9. Коэффициенты избытка воздуха в топке и уходящих газах
        • 6.2. Определение количества электрической энергии, необходимой для передачи тепловой энергии
      • 7. Определение количества воды, необходимой для производства и передачи тепловой энергии на планируемый период
        • Таблица 10. Удельный расход воды на продувку котлов в зависимости от их мощности
        • Таблица 11. Удельный расход воды на собственные нужды ХВО
        • Таблица 12. Удельный расход воды для шлакозолоудаления
    • Приложение 1. Индивидуальные нормы расхода топлива для котлоагрегатов на номинальной нагрузке Нij, кг у.т./Гкал
      • Паровые котлоагрегаты
      • Водогрейные котлоагрегаты
    • Приложение 2. Поправочный коэффициент к расходу тепловой энергии на горячее водоснабжение в зависимости от продолжительности работы системы горячего водоснабжения
      • Жилые дома квартирного типа
      • Общежития
      • Мотели, пансионаты, гостиницы
      • Санатории общего типа, дома отдыха, больницы
      • Школы-интернаты
      • Детские ясли-сады
    • Приложение 3. Определение расчетных часовых нагрузок отопления, приточной вентиляции и горячего водоснабжения
      • Расчетные тепловые нагрузки
        • 1. Отопление
          • Таблица 1. Расчетная температура воздуха в отапливаемых зданиях
          • Таблица 2. Поправочный коэффициент альфа для жилых зданий
          • Таблица 3. Удельная отопительная характеристика жилых зданий
          • Таблица 3а. Удельная отопительная характеристика зданий, построенных до 1930 г.
          • Таблица 4. Удельная тепловая характеристика административных, лечебных и культурно-просветительных зданий, детских учреждений
        • 2. Приточная вентиляция
        • 3. Горячее водоснабжение
          • Таблица 5. Удельные тепловые потери трубопроводов систем горячего водоснабжения (по месту и способу прокладки)
          • Таблица 6. Удельные тепловые потери трубопроводов систем горячего водоснабжения (по перепаду температуры)
          • Таблица 7. Коэффициент, учитывающий тепловые потери трубопроводами систем горячего водоснабжения
      • Расчетные весовые нагрузки (расход теплоносителя)
        • 4. Отопление
        • 5. Приточная вентиляция
        • 6. Горячее водоснабжение
          • 6.1. Системы теплопотребления с непосредственным водоразбором на горячее водоснабжение
          • 6.2. Системы теплопотребления без непосредственного водоразбора на горячее водоснабжение
            • 6.2.1. Параллельная схема подключения теплообменников горячего водоснабжения
            • 6.2.2. Двухступенчатая схема подключения теплообменников горячего водоснабжения
    • Приложение 4. Методика расчета удельных часовых тепловых потерь для среднегодовых условий функционирования тепловых сетей
      • 1. Подземная прокладка в непроходных каналах
      • 2. Подземная бесканальная прокладка
      • 3. Надземная прокладка
        • Таблица 4.1
        • Таблица 4.2. Поправки к коэффициентам теплопроводности теплоизоляционных материалов в зависимости от технического состояния изоляционных конструкций
        • Таблица 4.3. Коэффициенты теплопроводности грунтов в зависимости от увлажнения
    • Приложение 5. Поправки к нормируемым потерям тепловой энергии трубопроводами водяных тепловых сетей через изоляционные конструкции
    • Приложение 6
      • Таблица 6.1. Удельные затраты электроэнергии на привод тягодутьевых машин
      • Таблица 6.2. Максимальные значения удельной электрической мощности районных котельных, кВт/(Гкал/ч)
      • Таблица 6.3. Коэффициент спроса
    • Приложение 7. Теоретические удельные объем воздуха для полного сгорания топлива и объем продуктов сгорания, куб. нм/кг
      • Твердое топливо (уголь)
      • Жидкое топливо (мазут)
      • Газообразное топливо
    • Приложение 8. Средние значения калорийных эквивалентов для перевода натурального топлива в условное
    • Приложение 9. Характеристики некоторых нагревательных приборов
      • А. Радиаторы отечественного производства
      • Б. Радиаторы зарубежного производства
    • Приложение 10. Общие сведения о единицах измерения физических величин, примененных в методике
      • Соотношения между единицами физических величин в различных системах измерения
        • Мощность
        • Давление
        • Количество теплоты
    • Приложение 11. Примеры расчетов
      • Таблица 1. Показатели работы котлов
      • Нормативная характеристика котла ТВГИ-30 (топливо — природный газ)
      • Нормативная характеристика котла ДКВР-10-13: газ (А), мазут (Б)
        • А
        • Б
      • Таблица 2. Результаты расчета годовой групповой нормы расхода топлива (по кварталам)
      • Пример расчета средневзвешенной нормы расхода топлива на производство тепловой энергии по предприятию на 2003 год (Форма 1)
      • Результаты расчета групповой нормы расхода топлива на выработку тепловой энергии по государственному унитарному предприятию на 2003 год (Форма 2)

О разъяснении методических материалов, разработанных Роскоммунэнерго

МИНИСТЕРСТВО РЕГИОНАЛЬНОГО РАЗВИТИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ПИСЬМО
от 18 апреля 2005 года N 22-16

В Роскоммунэнерго от теплоэнергетических предприятий поступают вопросы, относящиеся к отдельным положениям методических материалов, разработанных Роскоммунэнерго.
Вопросы, в основном, относятся:
— к Методике определения количеств тепловой энергии и теплоносителя в водяных системах коммунального теплоснабжения, утвержденной приказом Госстроя России от 06.05.2000 N 105 (далее — Методика 1);
— к Методике определения нормативных значений функционирования водяных тепловых сетей систем коммунального теплоснабжения, утвержденной приказом Госстроя России от 01.10.2001 N 225 (далее — Методика 2).
Обобщив поступающие вопросы, Роскоммунэнерго сочло целесообразным составить настоящее информационное письмо, разъясняющее отдельные положения упомянутых методических материалов.

1. О методике учета тепловых потерь и теплоносителя при расчетах за потребленную тепловую энергию и теплоноситель.
Методика 1 при расчетах за тепловую энергию и теплоноситель предполагает учет тепловых потерь с утраченным теплоносителем и теплопередачей через изоляционные конструкции трубопроводов на конкретных участках тепловой сети, находящихся на балансе каждого из абонентов тепловой сети (пп.29, 31 Методики).
Указанные тепловые потери входят в состав использованной абонентами тепловой энергии и подлежат оплате.
Расчетное определение потерь теплоносителя отдельно для каждого из абонентов, системы теплопотребления которых не оснащены приборами учета тепловой энергии и теплоносителя, тепловых потерь, обусловленных утратой теплоносителя, а также тепловых потерь теплопередачей через изоляционные конструкции трубопроводов, находящихся на балансе этих абонентов, должно производиться по указаниям раздела 7 Методики.
Тепловые потери на участках тепловой сети, находящихся на балансе теплоснабжающей организации, отдельной оплате абонентами не подлежат, т.к. учтены в расходах по передаче тепловой энергии и входят в тариф, руб./Гкал.

2. Об учете отапливаемого подвала при определении расчетной часовой тепловой нагрузки отопления здания.
К отапливаемым подвалам следует относить подвальные помещения, в которых для поддержания проектного значения температуры воздуха предусмотрено проектом и осуществлено отопление при помощи отопительных приборов (радиаторов, конвекторов, регистров из гладких или ребристых труб) и (или) неизолированных трубопроводов системы отопления или тепловой сети.
При определении расчетного теплопотребления отапливаемого подвала по укрупненным показателям, прибавляя к строительному объему надземной части здания 40% строительного объема подвала, следует использовать отопительную характеристику здания с учетом суммарного строительного объема здания.
Если отопление подвала проектом не было предусмотрено, упомянутые выше трубопроводы должны быть покрыты тепловой изоляцией (СНиП 2.04.05-91*. Отопление, вентиляция и кондиционирование, п.3.23*).

3. Об определении расчетной часовой тепловой нагрузки отопления отдельных помещений.
Способ определения расчетной часовой тепловой нагрузки отопления отдельных помещений указан в п.1.4 приложения к Методике 1 и приведен в справочнике «Наладка и эксплуатация водяных тепловых сетей», М.: Стройиздат, 1988.
Для приближенного определения расчетной часовой тепловой отопительной нагрузки отдельного помещения по укрупненным показателям следует сначала определить расчетную часовую тепловую нагрузку отопления здания в целом, применяя в расчете значения удельной отопительной характеристики здания в соответствии с его наружным строительным объемом и коэффициента инфильтрации в соответствии с высотой этажа, а затем из общей тепловой нагрузки здания выделить нагрузку отдельного помещения пропорционально его объему.
Можно также определять расчетную часовую тепловую нагрузку отопления отдельного помещения по его объему, также применяя в расчете значения удельной отопительной характеристики здания в целом и коэффициента инфильтрации в соответствии с высотой этажа.

4. О свободной высоте здания.
В Методике 1 понятие «свободная высота здания L» для жилых и общественных зданий означает среднюю высоту этажа, м.

5. О размерности коэффициента инфильтрации.
Коэффициент инфильтрации — величина, размерности не имеющая. В формуле (3) на с.23 Методики 1 для определения значения этого коэффициента перед знаком квадратного корня стоит постоянная инфильтрации 10, имеющая размерность с/м.

6. О применении коэффициента , учитывающего изменение средней часовой тепловой нагрузки горячего водоснабжения в неотопительный период.
Коэффициент , учитывающий изменение средней часовой нагрузки горячего водоснабжения в неотопительный период по сравнению с нагрузкой горячего водоснабжения в отопительный период (п.3.2 приложения 1 к Методике 1), воспроизводит данные, приведенные в приложении 1* СНиП 2.04.07-86* «Тепловые сети».
В СНиП значения приведены для использования при проектировании, а воспроизведены в Методике — для определения средней часовой тепловой нагрузки горячего водоснабжения в неотопительный период.
При этом следует обратить внимание на то, что приведенные значения принимаются только в случае отсутствия значений , утвержденных в установленном порядке.
При утверждении значения для жилого сектора города в неотопительный период следует определять как отношение численности пользователей горячим водоснабжением жилого сектора города в неотопительный период к численности пользователей в отопительный период.

7. Об определении тепловых потерь разводящими трубопроводами систем отопления, проложенными вне отапливаемого объема здания.
Тепловые поступления от различного вида трубопроводов можно определять по методике, изложенной в справочнике «Наладка и эксплуатация водяных тепловых сетей». М.: Стройиздат, 1988.

8. Об определении тепловой нагрузки горячего водоснабжения, когда температура горячей воды отличается от температуры 55°C, при которой задана норма расхода горячей воды потребителями.
Тепловая нагрузка горячего водоснабжения зависит только от количества пользователей горячим водоснабжением.
При изменении температуры горячей воды (по сравнению с 55°C) изменяется расход горячей воды и теплоносителя (сетевой воды) для соответствующего нагрева воды, поступающей на горячее водоснабжение.

9. О документах по определению потребленной тепловой энергии расчетным путем (без измерений).
Нормативные документы обязательного характера, устанавливающие порядок определения количества потребленной тепловой энергии для расчетов с потребителями методами, не связанными с измерениями, нам неизвестны.
Письмом от 20.12.95 N 42-4-2/18 Госэнергонадзор для рассматриваемого случая рекомендовал применять раздел 5 «Правил учета отпуска тепловой энергии», ПР 34-70-010-85, предусматривающий использование балансового метода.
Более подробно этот вопрос проработан в Методике 1. При этом следует учитывать, что Методика рассчитана на применение в отношении предприятий, учреждений и организаций жилищно-коммунального хозяйства и бюджетной сферы (юридических лиц) и носит рекомендательный характер.
В связи с этим во всех случаях (и для упомянутых юридических лиц, и для других потребителей) ее применение должно быть оговорено в договоре теплоснабжения.

10. О взаимосвязи между нормативом потребления горячей воды и ее температурой. Нормативу потребления воды на горячее водоснабжение должно соответствовать значение ее температуры, при котором определен этот норматив. Например, нормативы потребления воды на горячее водоснабжение даны при ее температуре 55°C, в зависимости от степени комфортности зданий — СНиП 2.04.07-86* со ссылкой на СНиП 2.04.01-85*, приложение 3.
Следует учитывать, что повышение норматива потребления горячей воды неизбежно связано с нерациональным расходованием тепловой энергии на ее нагрев. Так, при норме расхода воды a = 105 л/чел.сут. при температуре = 55°C норматив теплового потребления на горячее водоснабжение одного человека в сутки (средний за неделю) составляет:
= mс ( — ) 10 = 105 · 1 · 1,0 (55 — 5) 10 = 0,00525 Гкал/чел.сут.
В этом расчете:
m — количество пользователей горячим водоснабжением, чел.;
c — удельная теплоемкость воды; принимается c = 1,0 ккал/кг °C.
Для сохранения количества тепловой энергии на горячее водоснабжение неизменным, при установлении норматива = 145 л/чел.сут. (такой норматив был приведен в поступившем запросе), был бы достаточен нагрев до = 41,2°C. Однако согласно п.4.16.3 ГОСТ р51617-2000 «Жилищно-коммунальные услуги. Общие технические условия» минимальный уровень температуры горячей воды в точках водоразбора у потребителей установлен = 50°C.
Следует иметь в виду, что установление норматива расхода горячей воды должно сопровождаться и установлением норматива расхода холодной воды (эта взаимосвязь наглядно показана в СНиП 2.04.01-85* «Внутренний водопровод и канализация зданий»).

11. О включении в расчет тепловой энергии, потребленной на горячее водоснабжение, коэффициента, учитывающего тепловые потери в системах горячего водоснабжения и затраты тепловой энергии на отопление ванных комнат.
Согласно Методике 1 для определения средней часовой тепловой нагрузки горячего водоснабжения потребителей тепловой энергии, не имея возможности определять тепловые потери в каждой из систем горячего водоснабжения и затраты тепловой энергии на отопление ванных комнат каждого потребителя, следует использовать в расчетах коэффициент , учитывающий эти величины, — формула (11) приложения 1 к Методике.

14. О нормах тепловых потерь (плотности теплового потока) водяными теплопроводами, спроектированными в различные периоды.
Нормы тепловых потерь (плотности теплового потока) водяными теплопроводами, приведенные в приложении 2 к Методике 2, основаны на Нормах проектирования тепловой изоляции для трубопроводов и оборудования электростанций и тепловых сетей (М.: Госстройиздат, 1959) и относятся к теплопроводам, спроектированным в 1959-1990 годах.
Нормы, основанные на СНиП 2.04.14-88, относятся к теплопроводам, спроектированным в 1990-1998 годах.
Нормы, основанные на СНиП 2.04.14-88* с изменением N 1 (для периода после 1998 года), приведены в подготовленном Роскоммунэнерго к изданию Пособии к Методике 2. Пособие с августа 2004 года распространяется Роскоммунэнерго.

15. Об учете потери (утечки) теплоносителя в системах теплопотребления, не превышающей допустимой погрешности измерений, при расчете с потребителями.
Согласно разъяснению ФЭК России от 27.11.2003 N КГ-4311/11 в случаях неполного возврата теплоносителя в тепловую сеть или на источник теплоснабжения потребитель должен компенсировать теплоснабжающей организации расходы на приобретение и химическую очистку воды.
Это правило не применяется при размере невозврата сетевой воды, не превышающем допустимой погрешности измерений.
Большинство известных теплосчетчиков измеряют расход теплоносителя с погрешностью ±2%. «Правила учета тепловой энергии и теплоносителя» допускают такую же погрешность для водосчетчиков.
Следует иметь в виду, что на стадии измерений с целью коммерческого учета ни поставщик энергии, ни ее потребитель не могут достоверно утверждать, что имеет место на самом деле: погрешность измерений (в допустимых пределах) или потери теплоносителя.
Установить это возможно экспериментальной проверкой, но воспользоваться ее результатами можно только при согласии сторон.
Суть эксперимента состоит в проверке плотности тепловой сети и систем теплопотребления путем закрытия задвижки на подающем трубопроводе тепловой сети на границе раздела или обеих задвижек. В первом случае, если утечка теплоносителя (сетевой воды) имеет место, преобразователь расхода должен показать отрицательный расход, во втором случае падение давления теплоносителя в тепловой сети потребителя покажет наличие утечки.

Заместитель
генерального директора —
главный инженер
Г.М.Скольник

Начальник отдела
энергосбережения
О.М.Бытенский

Электронный текст документа
подготовлен ЗАО «Кодекс» и сверен по:
официальный сайт Правительства
Магаданской области
www.magadan.ru
по состоянию на 30.01.2015

Расчет инфильтрации за счет перепада давления

В этой статье рассмотрим пример расчета инфильтрации. Расчет расхода поступаемого воздуха за счет перепада давления вызванный ветром и тяжестью воздуха из-за разницы температур воздуха.

Инфильтрация – это процесс проникновения воздуха в помещение через неплотности ограждающих конструкций или открытых окон. Ограждающие конструкции это наружные стены, окна и двери, которые отделяют помещение от наружного воздуха.

Для расчета вентиляции(инфильтрации) необходимо вычислить, какое количество воздуха будет поступать в помещение через неплотности ограждающих конструкций. Воздух поступает через неполтности ограждающих конструкций – это в основном окна и двери. Поступления воздуха в неплотностях стыков стен не учитываются, потому что они ничтожно малы по отношению к старым деревянным окнам и дверям. На сегодня пластиковые окна настолько герметичны, что их тоже не учитывают. Если имеются современные пластиковые окна, то для расчета расхода воздуха берется минимальный норматив воздухообмена в час. Эти нормативы указаны в специальных документах. Об этом написано тут: Расчет теплопотерь дома

Предыстория прошлых расчетов

В 1992 году был опубликован документ СНиП 2.04.05-91* ОТОПЛЕНИЕ, ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ. В приложении 10 указаны формулы такого содержания:

Эти формулы расчета уже давно не используются!

На сегодня используются другие формулы:

Согласно свежим правилам расчета СП 50.13330.2012 в разделе 7, используются другие формулы:

Формула указана в СП 50.13330.2012 в приложении Г.4 на странице 38.

Сопротивление воздухопроницаемости может быть выражено двумя способами, об этом ниже в примере расчета рассмотрим.

kдин — коэффициент, с помощью которого учитываются изменение динамических свойств ветра в застройке в зависимости от высоты и типа местности:

А – открытые побережья морей, озер и водохранилищ, пустыни, степи, лесостепи, тундра.

B – Городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями более 10 метров в высоту.

С – Городские районы с застройкой зданиями высотой более 25 метров.

Примечание: сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30H – при высоте сооружения H до 60 м. и 2 км. – при большой высоте.

сн, сз – аэродинамические коэффициенты на наветренном и подветренном фасадах, для большинства зданий на наветренной стороне сн = 0,8, а на заветренной сз = –0,6. Для зданий со сложным фасадом аэродинамические коэффициенты определяются с помощью моделирования или специального расчета;

Рв – внутреннее давление в расчетном помещении, Па, определяется расчетом системы уравнений баланса воздуха в каждом помещении здания. Ниже представлены 5 формулы для различных условий работы вентиляции.

(формула 1) Для зданий со сбалансированной механической вентиляцией и равномерно распределенными по фасадам воздухопроницаемыми элементами – половине полного гравитационного давления в здании и половине ветрового давления.

(формула 2) Упрощенный метод расчета внутреннего давления в здании. Наиболее распространен подход, когда за внутреннее давление в здании рв, Па, принимается полусумма ветрового и гравитационного давлений.

(формула 3) Для зданий со сбалансированной приточно-вытяжной вентиляцией и неравномерно распределенными по фасадам воздухопроницаемыми элементами половине полного гравитационного давления здания и усредненной величине ветровых давлений по площадям наветренного, подветренного и боковых фасадов.

сб — аэродинамический коэффициент на боковом фасаде, принимаемый cб = -0,4;

Aн, Aб, Aз — площади остекления наветренного, бокового и заветренного фасадов, м2

(формула 4) Для помещений, оборудованных только вытяжной вентиляцией, – по величине аэродинамического сопротивления, которое преодолевает вытяжной воздух из этого помещения, приближенно можно считать равным располагаемому давлению систем естественной вентиляции.

(формула 5) Для незадымляемых лестничных клеток и поэтажных переходов, помещений, оборудованных только вытяжной вентиляцией или в периоды выключения механической приточной вентиляции, в городских районах допускается расчетную разность давлений ΔP, Па, находить, полагая, что все фасады наветренные.

Если расчет инфильтрации через неплотности ограждающих конструкций показывает меньше нормы воздухообмена для помещения, то берется значение нормы по специальным документам. Об этом рассказано тут: Расчет теплопотерь дома

Если у Вас малоэтажное здание, то инфильтрация получается меньше нормы. Например, 3 этажный коттедж.

Формула для расчета теплопотерь от поступления холодного воздуха

Литература, где подробно описан расчет инфильтрации тут:

ABOK.pdf стр.14

Справочное пособие Е.Г.Малявина. стр.80. глава 6

У Малявиной в главе 7.5 есть пример расчета.

Пример расчета инфильтрации

Рассмотрим трехэтажный дом высотой 9 метров. Квартиры с естественной вентиляцией. Воздух заходит через окна, и выходит в общий вентиляционный канал. Общий вентиляционный канал связан со всеми этажами.

Возьмем для расчета помещение на первом этаже. Возьмем одну стенку и окно, на которую дует ветер 2 метра в секунду. Информацию о скорости ветра и ее направление указаны в СП 131.13330.2018 Строительная климатология.

Для расчета берем центр окна на высоте 2 метров от уровня земли.

Температура наружного воздуха -28.

Температура помещения 20 градусов.

Решение

Давление в помещении

Рассчитаем перепад давления воздуха на окно первого этажа по формуле:

Рассчитаем перепад давления воздуха на окно последнего этажа по формуле:

При расчете могут появляться отрицательные значение. В таком случае расход воздуха берется по нормативам воздухообмена указано тут: Расчет теплопотерь дома

Рассчитаем расход воздуха через окно по формуле:

1 кг воздуха это примерно 1 кубический метр.

Если значение инфильтрации получилось меньше нормы, то делается расчет воздуха по нормам. Нормы расхода воздуха указаны тут: Расчет теплопотерь дома

Если расход воздуха по нормам должен быть 30 м3 час, то делаем расчет воздуха на эту норму по формуле:

Подытожу

Даже если считать указанным способом как в этой статье, получается слишком маленькие расходы воздуха через окно. Эти расходы намного ниже норм, указанных по расходу воздуха тут: Расчет теплопотерь дома

Как узнать сопротивление воздухопроницаемости у моделей окон и дверей

Необходимо обратится к производителю окон или дверей определенной модели и потребовать протоколы(результаты) испытаний на воздухопроницаемость или просто спросить к какому классу принадлежит оконное изделие по воздухопроницаемости.

В ГОСТ 31167 указаны условия испытания окон для получения значения воздухопроницаемости.

В ГОСТ 23166-99 БЛОКИ ОКОННЫЕ. ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ в приложении Б, описаны классы А, Б, В, Г, Д. Каждый класс обладает своим значением воздухопроницаемости.

Оно же определяется по графику:

Какие должны быть нормы по воздухопроницаемости окон и дверей.

В справочном пособии Е.Г.Малявина имеется информация о расчетах нормы воздухопроницаемости.

Также в СП 50.13330.2012 разделе 7 написано, как определяется сопротивление воздухопроницаемости.

Норма сопротивления воздухопроницаемости вычисляется по формуле:

Данная таблица находится в СП 50.13330.2012 разделе 7.3 в таблице 19

Значение Gн расхода нельзя превышать.

Расчет нормативов сопротивления воздухопроницаемости

Если хотим перевести норматив к Δp=100 Па. То считаем по формуле ниже.

Далее необходимо перевести массовый расход в объемный расход, м3/час

Поскольку через окно поступает холодный воздух с улицы, то для расчета берем наружную температуру воздуха -28 градусов Цельсия.

Теперь, зная сопротивление воздухопроницаемости при Δp=100 Па, можем вычислить класс окна по таблице. Окно с таким значением воздухопроницаемости соответствует классу Г.

Класс Г = (17

Сопротивление воздухопроницаемости может быть выражено двумя способами:

Пример расчета инфильтрации окна, когда известен класс окна

Если значение расхода воздуха через окна меньше, чем должно быть по нормам для помещения, то выбираем для расчета норму расхода воздуха. О нормах расхода воздуха описано тут: Расчет теплопотерь дома

Расчет сопротивления через инфильтрацию реализован в программном обеспечении.

Необходимо каждому окну или двери задать сопротивление воздухопроницанию м2⋅ч /кг и перепад давления Па. И алгоритм расчета за вас выполнит расчеты.

Перед расчетом нужно указать:

В графе как считать поступаемый воздух: Воздухопроницаемость окон и дверей

Рассчитать направление ветра: Не направленный ветер

Средняя скорость ветра: Значение находится для каждого города в СНиП 23-01-99 Строительная климатология.

Нравится

Поделиться

Комментарии (+)

Серия видеоуроков по частному дому
Часть 1. Где бурить скважину?
Часть 2. Обустройство скважины на воду
Часть 3. Прокладка трубопровода от скважины до дома
Часть 4. Автоматическое водоснабжение
Водоснабжение
Водоснабжение частного дома. Принцип работы. Схема подключения
Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения
Расчет самовсасывающего насоса
Расчет диаметров от центрального водоснабжения
Насосная станция водоснабжения
Как выбрать насос для скважины?
Настройка реле давления
Реле давления электрическая схема
Принцип работы гидроаккумулятора
Уклон канализации на 1 метр СНИП
Схемы отопления
Гидравлический расчет двухтрубной системы отопления
Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана
Гидравлический расчет однотрубной системы отопления
Гидравлический расчет лучевой разводки системы отопления
Схема с тепловым насосом и твердотопливным котлом – логика работы
Трехходовой клапан от valtec + термоголовка с выносным датчиком
Почему плохо греет радиатор отопления в многоквартирном доме
Как подключить бойлер к котлу? Варианты и схемы подключения
Рециркуляция ГВС. Принцип работы и расчет
Вы не правильно делаете расчет гидрострелки и коллекторов
Ручной гидравлический расчет отопления
Расчет теплого водяного пола и смесительных узлов
Трехходовой клапан с сервоприводом для ГВС
Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п.
Конструктор водоснабжения и отопления
Уравнение Бернулли
Расчет водоснабжения многоквартирных домов
Автоматика
Как работают сервоприводы и трехходовые клапаны
Трехходовой клапан для перенаправления движения теплоносителя
Отопление
Расчет тепловой мощности радиаторов отопления
Секция радиатора
Зарастание и отложения в трубах ухудшают работу системы водоснабжения и отопления
Новые насосы работают по-другому…
Расчет инфильтрации
Расчет температуры в неотапливаемом помещении
Расчет пола по грунту
Расчет теплоаккумулятора
Расчет теплоаккумулятора для твердотопливного котла
Расчет теплоаккумулятора для накопления тепловой энергии
Регуляторы тепла
Комнатный термостат — принцип работы
Смесительный узел
Что такое смесительный узел?
Виды смесительных узлов для отопления
Характеристики и параметры систем
Местные гидравлические сопротивления. Что такое КМС?
Пропускная способность Kvs. Что это такое?
Кипение воды под давлением – что будет?
Что такое гистерезис в температурах и давлениях?
Что такое инфильтрация?
Что такое DN, Ду и PN ? Эти параметры нужно знать сантехникам и инженерам обязательно!
Гидравлические смыслы, понятия и расчет цепей систем отопления
Коэффициент затекания в однотрубной системе отопления
Видео
Отопление
Автоматическое управление температурой
Простая подпитка системы отопления
Теплотехника. Ограждающие конструкции.
Теплый водяной пол
Насосно смесительный узел Combimix
Почему нужно выбрать напольное отопление?
Водяной теплый пол VALTEC. Видеосеминар
Труба для теплого пола — что выбрать?
Теплый водяной пол – теория, достоинства и недостатки
Укладка теплого водяного пола — теория и правила
Теплые полы в деревянном доме. Сухой теплый пол.
Пирог теплого водяного пола – теория и расчет
Новость сантехникам и инженерам
Сантехники Вы все еще занимаетесь халтурой?
Первые итоги разработки новой программы с реалистичной трехмерной графикой
Программа теплового расчета. Второй итог разработки
Teplo-Raschet 3D Программа по тепловому расчету дома через ограждающие конструкции
Итоги разработки новой программы по гидравлическому расчету
Первично вторичные кольца системы отопления
Один насос на радиаторы и теплый пол
Расчет теплопотерь дома — ориентация стены?
Нормативные документы
Нормативные требования при проектировании котельных

Сокращенные обозначения
Термины и определения
Цоколь, подвал, этаж
Котельные
Документальное водоснабжение
Источники водоснабжения
Физические свойства природной воды
Химический состав природной воды
Бактериальное загрязнение воды
Требования, предъявляемые к качеству воды
Сборник вопросов
Можно ли разместить газовую котельную в подвале жилого дома?
Можно ли пристроить котельную к жилому дому?
Можно ли разместить газовую котельную на крыше жилого дома?
Как подразделяются котельные по месту их размещения?
Личные опыты гидравлики и теплотехники
Вступление и знакомство. Часть 1
Гидравлическое сопротивление термостатического клапана
Гидравлическое сопротивление колбы — фильтра
Видеокурс

Отопление

ТЕПЛОВОЕ ПОТРЕБЛЕНИЕ

КЛАССИФИКАЦИЯ ТЕПЛОВЫХ НАГРУЗОК

В системах централизованного тепло­снабжения (СЦТ) по тепловым сетям пода­ется теплота различным тепловым потреби­телям. Несмотря на значительное разнооб­разие тепловой нагрузки, ее можно разбить на две группы по характеру протекания во времени: I) сезонная;

2) круглогодичная.

Изменения сезонной нагрузки зависят от климатических усло­вий: температуры наружного воздуха, на­правления и скорости ветра, солнечного из­лучения, влажности воздуха и т.п. Основ­ную роль играет наружная температура. Се­зонная нагрузка имеет сравнительно посто­янный суточный график и переменный го­довой график нагрузки. К сезонной тепло­вой нагрузке относятся отопление, вентиля­ция, кондиционирование воздуха.

К круглогодичной нагрузке относятся технологическая нагрузка и горячее водо­снабжение.

График технологической нагрузки зави­сит от профиля производственных предпри­ятий и режима их работы, а график нагруз­ки горячего водоснабжения — от благоуст­ройства жилых и общественных зданий, со­става населения и распорядка его рабочего дня, а также от режима работы коммуналь­ных предприятий — бань, прачечных. Эти нагрузки имеют переменный суточный гра­фик. Годовые графики технологической на­грузки и нагрузки горячего водоснабжения также в определенной мере зависят от вре­мени года. Как правило, летние нагрузки ниже зимних вследствие более высокой температуры перерабатываемого сырья и водопроводной воды, а также благодаря меньшим теплопотерям теплопроводов и производственных трубопроводов.

Одна из первоочередных задач при про­ектировании и разработке режима эксплуа­тации систем централизованного тепло­снабжения заключается в определении значений и характера тепловых нагрузок.

В том случае, когда при проектировании установок централизованного теплоснаб­жения отсутствуют данные о расчетных расходах теплоты, основанных на проектах теплопотребляющих установок абонентов, расчет тепловой нагрузки проводится на ос­нове укрупненных показателей. В процессе эксплуатации значения расчетных тепло­вых нагрузок корректируют по действительным расходам. С течением времени это дает возможность установить проверенную тепловую характеристику для каждого по­требителя.

СЕЗОННАЯ НАГРУЗКА

Отопление

Основная задача отопления -это поддержание внутренней температуры помещений на заданном уровне. Для этого необходимо сохранение равновесия между тепловыми потерями здания и теплопритоком. Условие теплового равновесия здания может быть выражено в виде равенства

где Q — суммарные тепловые потери зда­ния; QT — теплопотери теплопередачей че­рез наружные ограждения; Qи — теплопо­тери инфильтрацией из-за поступления в помещение через неплотности наружных ограждений холодного воздуха; Q0 —подвод теплоты в здание через отопи­тельную систему; Qrv — внутренние тепло­выделения.

Тепловые потери здания в основном за­висят от первого слагаемого Qr. Поэтому для удобства расчета можно тепловые поте­ри здания представить так:

где m= Qи/Qт; — коэффициент инфильтра­ции, представляющий собой отношение теплопотерь инфильтрацией к теплопотерям те­плопередачей через наружные ограждения.

Источником внутренних тепловыделе­ний Qтв, в жилых зданиях являются обычно люди, приборы для приготовления пищи (газовые, электрические и другие плиты), осветительные приборы. Эти тепловыделе­ния носят случайный характер и не поддаются никакому регули­рованию во времени.

Для обеспечения в жилых районах нор­мального температурного режима во всех отапливаемых помещениях обычно уста­навливают гидравлический и температур­ный режим тепловой сети по наиболее не­выгодным условиям, т.е. по режиму отопле­ния помещений с нулевыми тепловыделе­ниями (QTB = 0).

Для предупреждения существенного по­вышения внутренней температуры в поме­щениях, в которых внутренние тепловыде­ления значительны, необходимо периоди­чески выключать часть отопительных при­боров или снижать расход теплоносителя; через них.

Качественное решение этой задачи возможно лишь при индивидуальной автома­тизации, т.е. при установке авторегулято­ров непосредственно на нагревательных приборах и вентиляционных калориферах.

Источник внутренних тепловыделений в промышленных зданиях — тепловые и си­ловые установки и механизмы (печи, сушила, двигатели и др.) различного рода. Внут­ренние тепловыделения промышленных предприятий довольно устойчивы и нередко представляют существенную долю расчетной отопительной нагрузки, поэтому они должны учитываться при разработке режима теплоснабжения промышленных, районов.

Теплопотери теплопередачей через наружные ограждения, Дж/с или ккал/ч, мо­гут быть определены расчетным путем по формуле

где F — площадь поверхности отделы; k – коэффициент теплопередачи наружных ограждений; Dt – разность температур воздуха с внутренней и наружной сторон ограждающих конструкций.

Теплопотери теплопередачей можно определить по формуле Ермолаева:

где kс, kок, kпл, kпт – коэффициенты теплопередачи стен, окон, пола нижнего этажа, потолка верхнего этажа; j — коэффициент остекления, т.е. отношение площади окон к площади вертикальных ограждений; y1 и y2 – поправочные коэффициенты на расчетный перепад температур для верхнего и нижнего горизонтальных ограждений; tв – усредненная температура внутреннего воздуха отапливаемых помещений; tн – температура наружного воздуха.

Теплогютери путем теплопередачи че­рез наружные ограждения здания

a полные теплопотери с учетом инфильт­рации

где qov – удельные теплопотери здания.

Для жилых и общественных зданий при правильной эксплуатации максимальный коэффициент инфильтрации в большинстве случаев составляет 3 — 6 %, что лежит в пределах погрешности расчета теплопотерь. Поэтому для упрощения инфильтра­цию не вводят в расчет, т.е. принимают m= 0. Для учета инфильтрации значение удельных теплопотерь принимают с не­большим запасом.

Теплопотери инфильтрацией промыш­ленных зданий нередко достигают 25 — 30 % теплопотерь через наружные ограждения, и их необходимо учитывать при расчете.

Расчетный расход теплоты на отопление необходимо определять для расчетной наружной температу­ры для проектирования систем отопления tно, равной средней тем­пературе наиболее холодных пятидневок, взятых из восьми наиболее холодных зим за 50-летний период.

Температура внутренней поверхности наружных стен непосредственно влияет на интенсивность теплоотдачи излучением от поверхности человеческого тела при нахо­ждении человека в жилых и общественных зданиях; максимальная разность между температурой воздуха в помещениях и тем­пературой внутренней поверхности наруж­ных стен должна быть не выше 6 °С .

Удельные теплопотери жилых и обще­ственных зданий с наружным объемом V > 3000 м, сооруженных по новым проек­там после 1985 г., атакже более утепленных зданий, сооруженных ранее, в районах с расчетной наружной температурой для отопления tно = — 30 °С могут быть ориентировочно вычислены как

где a= 1,85 Дж/(м2’5 • с • К) = 1,72 ккал/(м2,5 • ч • °С).

При определении тепловой нагрузки вновь застраиваемых районов и отсутствии данных о типе и размерах намечаемых к со­оружению общественных зданий можно ориентировочно принять расчетный расход теплоты на отопление общественных зда­ний равным 25 % расчетного расхода тепло­ты на отопление жилых зданий района.

Инфильтрация наружного воздуха в по­мещениях происходит под действием пере­пада (разности) давлений наружного и внут­реннего воздуха. Этот перепад давлений представляет собой сумму двух слагаемых:

где Dрг и D рв — гравитационный и ветро­вой перепады давлений, Па,

Здесь L — свободная высота здания (для жилых и общественных зданий — высота этажа), м; g — ускорение свободного падения; wb -— скорость вет­ра, м/с; rн, rв — плотности наружного и внутреннего воздуха, кг/м .

Скорость прохождения инфильтруемого воздуха через живое сечение неплотностей в наружных ограждениях зданий, м/с,

Теплопотери с инфильтрацией

где F – площадь суммарного сечения неплотностей в наружных ограждениях; св – объемная теплоемкость воздуха.

Коэффициент инфильтрации

где b = cBF/qovV— постоянная инфильтра­ции, с/м.

Значение постоянной инфильтрации, должно определяться опытным путем. При отсутствии опытных данных можно для ори­ентировочных расчетов принимать следую­щие значения, м/с:

Для отдельно стоящих промыш­ленных зданий с большими све­товыми проемами…………………… (35—40)10-3

Для жилых и общественных зда­ний с двойным остеклением при сплошной застройке кварталов.…… (8—10)10-3

Расчетными теплопотерями называются теплопотери при расчетной наружной тем­пературе tно. Рас­четные теплопотери здания с учетом ин­фильтрации:

При постоянном значении коэффициен­та инфильтрации здания отношение теплопотерь Q данного здания или группы зданий при любой наружной температуре tн > tно красчетным теплопотерям

При отсутствии данных о типе застройки и наружном объеме жилых и общественных зда­ний строительными нормами и правилами СНиП II 04.07.86 «Тепловые сети» реко­мендуется определять расчетный расход тепло­ты на отопление жилых и общественных зданий по формуле

где q0 — укрупненный показатель максимального расхода теплоты на отопление I м2 площади жилых зданий, Вт/м ; А — общая площадь жилых зданий, м2 ; К1 — коэффициент, учитывающий расход те­плоты на отопление общественных зданий. При отсутствии данных рекомендуется принимать К} = 0,25.

Для экономного использования топлива весьма важное значение имеет выбор начала и конца отопительного сезона. Начало и конец отопительного сезона для жилых и общест­венных зданий обычно регламентируются мест­ными органами власти.

Действующими в нашей стране строитель­ными нормами и правилами продолжительность отопительного периода определяется по числу дней с устойчивой среднесуточной температу­рой +8 °С и ниже. Эту наружную темпера­туру обычно считают началом и концом отопительного периода tнк = 8 °С.

Переход от директивной экономики к рыноч­ной в принципе снимает какие-либо ограниче­ния в назначении продолжительности отопи­тельного периода. Эту продолжительность (на­чало и конец) определяет потребитель тепловой энергии — абонент энергоснабжающей органи­зации. В то же время для энергоснабжающей ор­ганизации важно знать продолжительность пе­риода, в течение которого будет иметь место спрос на теплоту, подлежащий удовлетворению энергоснабжающей организацией. Такой спрос на теплоту должен определяться, как правило, на основании многолетних статистических дан­ных с учетом прогноза роста (снижения) при­соединенных к тепловым сетям тепловых нагру­зок. Нормы СНиП должны применяться в основ­ном при решении проектных, а не эксплуатаци­онных задач.

Начало и конец отопительного сезона для промышленных зданий опреде­ляются наружной температурой, при кото­рой теплопотери через наружные огражде­ния делаются равными внутренним тепло­выделениям. Так как тепловыделения в промышленных зданиях значительны, то в большинстве случаев длительность отопи­тельного сезона для промышленных зданий короче, чем для жилых и общественных. Среднесуточная температура наружного воздуха, соответствующая началу и концу отопительного сезона промышленных зда­ний с большими внутренними тепловыделе­ниями, может быть найдена по формуле


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *